被修理工强行侵本田莉子_一级片视频免费看_亚洲欧美视频_欧美日韩亚洲高清不卡一区二区三区,日本免费三区,老师您的兔子好软水好多直播,岛国搬运工最新网址

您的位置: 首頁 > 新聞動態 > 企業新聞

能源管理過程中如何進行負荷預測?

關鍵詞: 能源管理 發布日期:2020-12-22 瀏覽次數:作者:能源管理負荷預測

能源管理過程中,大數據技術有了充分的施展空間,其處理大數據量和知識學習等方面的獨特優勢十分顯著,為大幅提升能耗預測模型的使用效率莫定了基礎,從而大幅提高了能耗負荷預測精度。能源管理過程中進行能耗負荷預測詳細過程如下:

能源管理過程中如何進行負荷預測?(圖1)

一、曲線聚類分析

能耗曲線的走勢與日類型、天氣因素等密切相關。合理的數據挖掘技術--聚類分析能夠將能耗規律相近的日期歸為一類。采用馬爾科夫鏈、貝葉斯模型等,可以提取復雜的能耗負荷變化曲線的特征向量,進一步通過K-means等聚類分析算法將零散分布的獨立樣本逐漸歸為趨勢相近的若干類,為能耗負荷預測提供參考。

二、確立關鍵影響因素

采用關聯分析算法,計算如日最高氣溫、日平均氣溫、平均濕度、日類型(星期幾)等影響因素與能耗的關聯度排序,剔除影響因子較低的因素,簡化能耗預測模型,提高海量數據計算效率。

三、建立分類規則

得到了待預測日過去一年的歷史能耗曲線的分類結果和影響能耗的關鍵因素。通過決策樹算法,找到分類結果與關鍵影響因素間的耦合關系,并以分類規則的形式表現出來。該步驟的作用是當已知待預測日能耗的關鍵影響因素值時,可以根據不同分類規則將預測日對應到不同的聚類中,從而該類的結果就可以作為預測日的相似日數據集來訓練模型。

四、選擇匹配模型。

當得到預測日的關鍵因素日特征向量(即關鍵因素值組成的向量)后,將其輸入建立的決策樹模型中,即可輸出相應的分類結果。

五、訓練預測模型并預測。

針對分類結果,將每類的能耗數據及相應的關鍵因素數據構建訓練樣本。針對每類能耗數據的變化規律和特征,選取匹配的預測模型來完成對該日能耗的預測。使用支持向量機算法,采用RBF核函數,并設定核函數參,不敏感系數和懲罰參數。根據得出的待預測日的分類結果,選用對應的支持向量機模型完成預測。

能源管理過程中能耗負荷預測的開展大體可以通過以上五大步驟來實現,大家可以參考一下。

微信二維碼

掃碼添加微信,一對一咨詢產品、免費報價

主站蜘蛛池模板: 新和县| 巴青县| 漯河市| 垦利县| 含山县| 黑水县| 左云县| 东方市| 建水县| 贵州省| 旬阳县| 鄯善县| 凤翔县| 巍山| 靖西县| 伊通| 藁城市| 阿拉善左旗| 临海市| 中牟县| 嘉祥县| 巴中市| 巫溪县| 泸溪县| 新沂市| 台湾省| 达孜县| 冷水江市| 建湖县| 石景山区| 娱乐| 玉溪市| 长寿区| 枣阳市| 清流县| 黄梅县| 包头市| 酒泉市| 邹平县| 清河县| 高青县|